הַיוֹם בַּאֲשֶׁר קוֹמַם יֵשׁוּטַ

הַמָּשִׁיַח מִן־הַמֵּתִּים

The Resurrection Day Of Messiah Yeshua
When It Happened
According To The Original Texts

Order From:
http://www.torahtimes.org/

Preview is on next two Pages (laid out in book order)

The point in the year when this event occurs is called the "circuit of the days," "circuit of the year" or "turn of the year." It marks the boundary of the year between "days" and "days." So in the text "from days to days," the dividing point is the tequfah, [תקקוּפָח][.

The word tequfah is applied to each turning or return point, a. extreme south, b. extreme north, and c. the midpoint:

In them he has placed a tent for the sun, which is as a bridegroom coming out of his chamber; it rejoices as a strong man to run his course. At the extremity [מִקְצֵה] of the heavens is its going forth, and its turning point [תְקוּפָת $]$ is at their extremities [קְצוֹת], and nothing is hidden from its heat. (Psalm 19:4b-6).

Holladay gives the Hebrew definition of "extremity": "end, edge, border, extremity." ${ }^{281}$ In the context of this Psalm it refers to the extreme points of the sun, to the north, and to the south. Holladay also defines "turning point" [תְתקוּפָה"]: "turning (of the sun at solstice) Psa 19; (of the year, i.e. end of year, at autumnal equinox) Ex 34_{22}; (of the days [i.e. of the year] = end of year) $1 \mathrm{~S} 1_{20},{ }^{, 282}$ Thus the word tequfah refers to the spring equinox (1 Sam 1:20), the summer solstice (Psa. 19:6 [7]), the autumn equinox (Ex 34:22) and the winter solstice.

Farthest South point			Farthest North point
	80	8	
	Winter	Spring	

[^0]The three points in the figure mark (in order from left to right): left: winter solstice, the midpoint: equinoxes, right: summer solstice.

Now, it was necessary to know when the spring tequfah was in advance in order to determine the Passover. For this ancient peoples built observatories. Archaeoastronomers show that ancient sites like Stonehenge were in fact observatories. One such site in Israel is Gilgal Refaim (Rujm el-Hiri) on the Golan Heights. The Israelites, of course, did not need such huge observatories. All that is needed is to fix a pole upright over a flat surface so that the sun makes a shadow. The pole is called a gnomon. The key to using a gnomon is to plot the tip of the shadow made by the top of the pole. This shadow will travel in a straight line on the day of the equinox: $:^{283}$

[^1]
To preview the next pages visit the main index at:

http://www.torahtimes.org/pbook

How Christ was raised on the Sabbath

www.torahtimes.org/book/

[^0]: ${ }^{281}$ pg. 321, a concise Hebrew and Aramaic lexicon on the old testament, William Holladay.
 ${ }^{282}$ pg. 394, Holladay. All the [] and () in the quote are Holladay's original explanation. Holladay is incorrect to refer Exodus 34:22 to the autumn equinox, as the words "תְקוּפתת הַשָּנְנה" refer all the way back to vs. 18, and forward to vs. 23 , as being three feasts in the circuit of one year. The words may refer to either the whole circuit or to one of the four cardinal points of the circuit.

[^1]: ${ }^{283}$ One can demonstrate this using a planetarium program. The time of the equinox is when the sun is at RA $00^{\mathrm{h}} 00^{\mathrm{m}} 00^{\text {s. }}$. (If this is between sunset and sunrise, then take the next day as the new year day.) First record $\angle \mathrm{BNG}=\boldsymbol{v}$, the altitude of the sun when it reaches azimuth 180° (measured clockwise from North 0°) on this day (Figure with the sun at (1). Let \boldsymbol{h} be the height of the gnomon $\widehat{B G}$. The length of the shadow cast $B N=\boldsymbol{h} / \boldsymbol{\operatorname { t a n }}(\boldsymbol{v})$. Second record the sun's altitude $\angle \mathrm{GEB}=\boldsymbol{\alpha}$ and azimuth $\angle \mathrm{BEW}=\boldsymbol{\epsilon}$ (measured counter-clockwise from west 0°) at a time after noon, say 3 p.m. (Figure with the sun at). The length of the shadow cast $B E=\boldsymbol{h} / \boldsymbol{\operatorname { t a n }}(\boldsymbol{\alpha})$. When the sun is at $\epsilon=\angle \mathrm{EWB}$ azimuth (sun ${ }^{3}$, measured clockwise from east 0°), the length of $B W=B E$ since the altitude of sun(3) $\angle \mathrm{BWG}$ is symmetrical to sun. Through the points of the E and W shadows, $E W$ a line of latitude may be drawn. Point N lies on $\overline{E W}$ only if $B E \times \sin (\epsilon)=\overline{B N}$. For if the line $\overline{E W}$ where not straight $\angle \mathrm{BNE}$ and $\angle \mathrm{BNW}$ would not be right angles, and $B E \times$ $\frac{\sin (\epsilon)}{B N}=\overline{B N}$ would not hold true. Or: find $\overline{E N}=\sqrt{E B}-\overline{B N}$ and then find $\overline{B N} / \overline{E N}=\tan (\epsilon)$.

